C) an increase in the reaction rate by 23 times;
D) an increase the reaction rate by 15 times;
E) an increase the reaction rate 10 times.
70. An increase in the concentration of oxygen by 3 times in the reaction $2 \mathrm{CuS}+3 \mathrm{O}_{2}=$ $2 \mathrm{CuO}+2 \mathrm{SO}_{2}$ results in:
A) an increase in reaction rate by 9 times;
B) an increase in the reaction rate by 25 times;
C) an increase in the reaction rate by 3 times;
D) reducing of the reaction rate by 9 times;
E) reducing of the reaction rate by 25 times.
71. An increase in the concentration of SO_{2} by a factor of 3 in the reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2}=$ $2 \mathrm{SO}_{3}$ leads to:
A) an increase in the reaction rate by 9 times;
B) reducing of the reaction rate by 9 times;
C) reducing of the reaction rate by 8 times;
D) reducing of the reaction rate by 3 times;
E) an increase in the reaction rate by 3 times.
72. An increase in the oxygen concentration by a factor of 2 in the reaction $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}=$ $2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ leads to:
A) an increase in the reaction rate by 2 times;
B) an increase in the reaction rate by 6 times;
C) decrease in the reaction rate by 6 times;
D) an increase in the reaction rate by 8 times;
E) reducing of the reaction rate by 8 times.
73. Reducing the oxygen concentration by 2 times in the reaction $\mathrm{CuS}+3 \mathrm{O}_{2}=2 \mathrm{CuO}+$ $2 \mathrm{SO}_{2}$ results in:
A) an increase in the reaction rate by 2 times;
B) decrease in the reaction rate by 2 times;
C) an increase in the reaction rate by 9 times;
D) reducing of the reaction rate by 6 times;
E) reducing of the reaction rate by 8 times.
74. Increasing the concentration of sulfur oxide (IV) by 2 times in the reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2}=2 \mathrm{SO}_{3}$ results in:
A) an increase in the reaction rate by 2 times;
B) reducing of the reaction rate by 3 times;
C) an increase in the reaction rate by 3 times;
D) an increase in the reaction rate 9 times;
E) reducing of the reaction rate by 9 times.
75. For the reaction $2 X+Y=Z$ with $C_{x}=1.0 \mathrm{~mol} / \mathrm{L}$ and $C_{y}=2.5 \mathrm{~mol} / \mathrm{L}$, the reaction rate is $0.5 \mathrm{~mol} /(\mathrm{L} \cdot \mathrm{h})$. Calculate the reaction rate constant:
A) 0.01 ;
B) 0.005 ;
C) 0.2 ;
D) 0.3 ;
E) 0.05 .

